Sabtu, 17 Januari 2009 di 23.52 | 1 komentar  

3D Fresnel


3D Terrain Viewer


3 D Freznel Zone


3D Terain Viewer


Local Study viewer


Clutter Viewer


Local Study


Pathloss 5.0 Will released on February 2009

Program options

Pathloss version 5 is available in several options
PL5B - Basic program - point to point link design

The basic program consists of the network display and the automated linking and design features for point to point radio links. This includes the design sections for terrain data, antenna heights, diffraction, transmission analysis and reflections - multipath analysis. These features are common to all program options.
PL5C - Point to multipoint design - local studies

The point to multipoint design option adds multi-sectored base stations to the network display. These are used for the automatic PTMP linking and design features. Additionally local coverage studies can be carried out from a base station using signal strength, fade margin or visibility as the display criteria. In addition to the Pathloss deterministic diffraction algorithms, local studies can be carried out using the F(50,50), F(50,90), F(50,10) curves, Okimura (Hata) and Cost (Hata) empirical algorithms.
PL5I - Interference

An interference analysis can be carried out between groups of links in the network display or between a network display group and the Pathloss site database for all radio types. For each receiver, the aggregate interfering level of all transmitters is calculated. The receiver threshold degradation and the resulting increase in the outage probability is then determined taking into account the fade correlation for rain and multipath fades. Interference through passive repeaters is included in the calculation.
PL5T - Interference, point to multipoint design, local and area studies

This option combines the point to mulitpoint - local studies and interference options and adds area study analysis. In a local study each base station has its own coverage centered on the base station. In an area study, signals from a number of base stations are calculated into a common area. In addition to receive signal levels, an area study can display the most likely server, carrier to interference and simulcast delay.
Program organization

All operations are centered around the network display which provides a geographic layout of sites and links. The following backdrops are available in this display:

* Geo-referenced imagery in bmp, png, jpg and tif file formats. The geo reference information can be obtained from external text files (Planet type), MapInfo tab files, directly from geo-tiff files or can be manually geo referenced directly in the program.
* Vector data in ESRI shapefile or Planet formats.
* Elevation displays in a flat and shaded format. The elevation ranges, absolute- relative settings, colors, and transparency are completely configureable.
* A 3 dimensional elevation display showing the Fresnel zone radius on links. Pan, zoom and the view point control allow the user to effectively fly along a path.
* Clutter displays. The color legend and overall transparency are completely configureable

The Pathloss program contains two separate applications as follows.

* PL50 - network display and integrated link design sections.
* PL50L - link design sections only

In the network display, the link design sections are accessed by clicking on the specific link. It is not possible to access the link design sections for a link which are not associated with the network display using the standard open file dialog. The stand-alone PL50L link design application is used for this purpose.
Network display operations

Operations are based on groups or a selection of sites and links. A selection is a temporary group. There can be any number of named groups and these can overlap other groups. Groups of links can be automatically created based on path length, frequency and fade margin The default group is all sites and links. The following operations are carried out in the network display.

* Interference calculations between two groups of links in either or both directions. One of the groups can be the Pathloss site database
* Automatic point to point linking - generate all possible links between two groups of sites and determine the final configuration based on path length, antenna heights, diffraction loss or fade margin.
* Automatic point to multipoint linking - generate links from a base station to a group of sites or all sites within a specified radius and determine the final configuration based on path length, antenna heights, diffraction loss or fade margin. Remote sites are linked to the best sector at the base station.
* Automatic link design - specify the equipment parameters and the design methods and algorithms for a group of links and generate path profiles and carry out a complete transmission analysis. This feature is also used in the automatic point to point and point to multipoint linking.
* Point to point channel frequency and polarization assignments
* Network performance analysis
* Passive repeater design
* Local and area studies
* Report generation for a group of links. Any combination of report options can be printed for the selected group

Export file formats

The network display can be exported in the file formats listed below. Local and area studies are exported as vector contours.

* Google Earth using kml - png files
* MapInfo mid mif files
* ESRI shapefiles

New link design features
Antenna heights

* The antenna heights display now shows the Fresnel zones and earth radius factor as separate curves resulting in a more intuitive operation.
* The diffraction loss at the minimum expected value of K and a second user specified value of K can be displayed as the antenna heights are varied.
* Any combination of antenna heights can be analysed using either the main or diversity clearance criteria.
* A minimum clearance can now be specified as part of the clearance criteria.

Transmission analysis

* The transmission analysis section supports conventional microwave, adaptive modulation and land mobile radios
* The automatic link design feature is available in this design section. All location dependant parameters are determined from the site coordinates and terrain roughness is automatically calculated

Rain attenuation

The ITU-R P837-3 database and legacy ATT rain data files are now included.

Automatic rain calculations are carried out based on site coordinates for all rain data sources
Reflections - multipath

The reflections and multipath modules in version 4 have been combined into a single design section. The constant gradient ray trace is a precursor to determine if the path geometry supports a specular reflection and the location of the reflective plane.

Normally a reflective plane must be defined to analyse receive signal variations as the antenna heights, earth radius factor, frequency or tide levels are varied. This analysis can now be carried out using ray tracing for the earth radius factor or antenna height variables. This method considers terrain reflections over the entire path and is a better representation of the actual behaviour of the path.

The variable gradient ray trace now uses the surface ducts, elevated surface ducts and elevated duct data in the ITU-R P.453-8 data base. M-profiles and the probability of their occurrence are calculated using the site coordinates from this data
Reports

All reports are created in an integral RTF full featured word processor. This allows text and graphics to be combined in the reports.
Clutter

The following options for clutter (land cover, morphology) have been implemented:

* The clutter database only contains a description of the clutter. The user specifies the heights to be used for the various clutter types in a clutter definition table. This clutter definition can be edited for individual link designs
* The clutter database contains the actual height of the clutter. No descriptions are available.
* The clutter elevations are determined from the difference between the primary DEM and the clutter database. For example, the primary DEM could contain embedded building heights and the clutter database could contain terrain elevations only. The terrain profile would be created using the ground elevations and the clutter would be the difference between the two database elevations. This option can be used with SRTM and bare earth data such as NED to calibrate a description only clutter data base.

In a description only clutter database, the various clutter types are cross referenced to ten standard clutter definitions. These standard definitions are used in local and area studies for the location variability and the clutter loss as a function of frequency at the remote location.
Local and area studies

Version 4 coverage analysis uses a series of radial profiles with calculations at uniform increments along the profile. This produces a high concentration of data in the central area which decrease at the edges.Version 5 uses the concept of cells for both local and area studies to provide a uniform data density. The user specifies the cell size and a tolerance. The tolerance determines the location of the calculation point within the cell. A tolerance of 0 means that the calculation point is the exact center of the cell. A tolerance of 1 means that the calculation will be somewhere in the cell. Radial profiles are still required for the analysis; however, calculations are only made at the points as determined above The tolerance parameter affects the number of profiles required to generate the study and the calculation time.

Local studies are always a circle centred on the base station. Area studies can be rectangular, elliptical or a user defined polygon.

The following additions to the diffraction algorithms allow the studies to be carried out for an aircraft as the remote station.

* Antenna heights can be specified relative to ground level or sea level.
* Antenna heights greater that 1 kilometer are corrected to account for the exponential refractivity gradient.
* Either the earth radius factor - K or the surface refractivity can be specified

Digital terrain data
Digital elevation models

Terrain data is not supplied with the program. The following digital elevation data formats are supported:

* SRTM hgt and bil files (1 arc second - USA, 3 arc seconds - world) wide)
* USGS national elevation data (NED) 1 arc second, 1/3 arc second and 1/9 arc second
* USGS ASCII files 1:250,000 3 arc second, 1:24,000 30 meter and 10 meter
* DTED
* Canadian CDED files 1:250,000 (3 arc seconds) and 1: 50,000 (0.75 arc seconds)
* ESRI GRIDASCII
* South Africa NES - Cape datum and ORT - Hartebeesthoek94 datum using Gauss conform projection
* USGS GTOPO30 global 30 arc second
* USA 3 second compressed CTE format
* Generic BIL format for both geographic and projected formats

Digital clutter models

The following digital clutter data formats are supported:

* 1992 and 2001 National land cover data (NLCD) 1 arc second
* Global Land Cover Characteristics (GLCC) 30 arc seconds
* Generic BIL format for both geographic and projected formats. (Planet clutter uses a BIL projected format)

Pathloss site database

An ODBC interface (open database connectivity) is provided to connect to a user's database. The connection is defined by the ODBC drivers supplied with the users data base. The database consists of a predefined set of relational tables. Site and link data can be transferred between the database and the network display. In addition, the database can be used in interference calculations with links in the network display.
Antenna and radio data files

A separate application, ant_rad.exe, is used to create and edit radio and antenna data files. This is included with the Pathloss program and is also available separately. There is no charge for this program.

Version 4 used a directory search algorithm to locate the radio and antenna data files starting a user specified top level directory. In version 5, the radio - antenna codes (file name without the extension) are used as a key field in a lookup table. This means that the file names must be unique. The radio antenna code name lengths have been increased from 15 characters to 47 characters. File naming strategy becomes an important issue in this arrangement.
Antenna files

The NSMA / TIA antenna ASCII file format is used as the source data for antenna data.

Version 4 used separate binary antenna data (mas /vas) files for microwave antennas and for VHF-UHF applications. Version 5 uses a single binary file format (asd) for all antenna technologies. Version 5 can use version 4 antenna data files with no restrictions.
Radio Files

Version 4 radio data files were used for microwave applications only. Version 5 uses an expanded file format (rsd) to all radio technologies including adaptive modulation and land mobile applications.

Version 4 used a traffic code consisting of the modulation and capacity (e.g. 16E1-QPSK) as an identifier for different interfering radios. Version 5 will read version 4 radio files and use the same identifier convention; however version 5 radio files use the radio code as the identifier instead of the traffic code.
Documentation

The documentation is integrated into the program in a compiled html format. A printed manual will be available separately in the future
File formats

New file formats are used for the network (gr5) and link design (pl5) files. The program can read version 4 gr4 files but these will be saved in the version 5 gr5 format. The program can read and write version 4 pl4 files. Depending on the application and the specific data, some data may be lost when saving in the pl4 file format.
Limitations in the interim release

* The full functionality of the ODBC interface has not been implemented
* The French Spanish and German languages have not been implemented. All screen displays and reports are in English only.
* The radio lookup table has not been implemented. Automatic data entry can only be carried out with the radio index
* The documentation may be in draft format in some sections.



Diposting oleh Pathloss50 Label:















Diposting oleh Pathloss50 Label:
Kamis, 08 Januari 2009 di 22.12 | 0 komentar  








Diposting oleh Pathloss50 Label:
The 3D View command in Global Mapper allows registered users to view gridded elevation data and any overlying raster or vector data in a true perspective 3D manner. When selected, the 3D View command displays a window containing a 3D view of the data in the current Global Mapper view. Any imagery or vector data being drawn on top of the elevation grid(s) in the main Global Mapper view will automatically be draped on top of the elevation data in the 3D View window.The image below depicts a sample of the 3D View window displayed using 250K USGS DEM data for Salt Lake City, UT overlaid with DOQ satellite imagery from the TerraServer import command under the File menu. The 3D View window contains a toolbar with command buttons allowing you to modify the default view. You can use the mouse to rotate the view around as well as zoom in. The arrow keys on the toolbar allow you to pan the data visible in the 3D view in any direction. The zoom in and out buttons allow you to zoom in or out on the center of the 3D view. Additional buttons are also available for modifying the vertical exaggeration, displaying water, and saving the 3D view contents to a Windows BMP, TIFF, PNG, or JPG file.


The contents of the 3D View window will always reflect what is visible in the main Global Mapper view. This means that as you pan and zoom around the main Global Mapper view, the contents of the 3D View window will pan and zoom around as well. The reverse is also true in that the pan and zoom buttons on the 3D View window will cause the main Global Mapper view to pan and zoom as well. Another example of the 3D view is displayed below. This time, it is several 24K USGS DLGs for Blue Springs, MO overlaid on several 24K USGS DEMs for the same area.




You can also save a measurement to a separate feature by right clicking and selecting "Save Measurement" from the list that pops up. You can then export these measurements to new vector files, such as Shapefiles or DXF, or modify them with the Digitizer Tool. There is also an option to copy the measurement text to the clipboard when you right-click. If you have gridded elevation data loaded under the measurement, you can also calculate the Cut-and-Fill volume either within the measurement area or within some distance of the measurement line. To do this,
simply right click then select the "Measure Volume (Cut-and-Fill)" option that appears. Selecting this option will display the Setup Volume Calculation Parameters dialog (pictured below), which allows you to set up thevolume measurement.



Pathloss With Global Mapper:

The PathProfile/LOS command selects the 3D path profile/LOS (line of sight) tool as the current tool. This tool allows you to get a vertical profile along a user-specified path using loaded elevation datasets. In addition, registered users can perform line of sight calculations along the defined path. To define the path along which to generate the 3D path profile, first select the path profile tool as your current tool. Press and release the left mouse button at the position where you wish to start the path. Move the mouseto the next position that you want to include in the path profile, then press the left mouse button again. Right click on the last location in the path profile to complete selecting points and display the Path Profile/Line of Sight dialog (pictured below). The Path Profile/Line of Sight dialog will appear displaying the 3D path profile of the selected path. Any points along the path that did not have elevation data underneath will be treated as an elevation of zero. You can also generate 3D path profiles for existing line features by selecting the line feature in the Digitizer Tool, right clicking, then selecting the Generate Path Profile From Line option on the menu that is displayed.

The Path Profile/Line of Sight dialog displays the 3D path profile and provides several options related to the profile. A vertical scale is displayed on the left hand side of the profile window. The start and end coordinates of the path are displayed at the top of the profile window. If more than two points are in the path, the intermediate points will be marked in the profile window with a yellow dot. These intermediate points can be toggled on and off using an option available by right clicking on the path profile window. Also note that this dialog is resizable. Right clicking on the profile window brings up an options menu allowing the user to change the start and end positions, select the units (meters or feet) to display the elevations in, configure display of the path profile, and display a dialog containing details about the path. These options are also available under the Options menu on the dialog. The File menu contains options allowing you to save the path profile/line of sight data to a file. The individual options are described below. The Save To Bitmap... option allows registered users to save the contents of the path profile window to aWindows bitmap (BMP) file for use in other applications.


Diposting oleh Pathloss50 Label:
Senin, 29 Desember 2008 di 19.02 | 0 komentar  


Sistem yang multiple access (MA) adalah sistem yang dapat melayani banyak pelanggan (user) secara bersama-sama (simultan). Agar terjadi multiple access, maka harus tersedia kanal-kanal/saluran-saluran yang jumlahnya lebih dari satu. Jika pada saat yang sama terdapat 10 pelanggan yang ingin dilayani, maka diperlukan kanal sebanyak 10 buah pula.

Dengan sistem multiple access yang bagus, tidak akan terjadi antrean panjang dan macet. Secara umum, bisa saja sistem multiple access diterapkan dalam berbagai bidang kehidupan, seperti sistem pembayaran di loket PLN, teller bank, dan sebagainya. Tapi pada kenyataannya, penerapan pada bidang telekomunikasilah yang banyak memunculkan multiple access baru.

Tren sistem telepon seluler mendongkrak pemakaian multiple access untuk sistem komunikasi bergerak (mobile communication system). Kemajuan yang dicapai oleh telepon seluler bahkan melebihi sistem komunikasi bergerak lain seperti telepon cordless (sekarang juga lagi musim), paging (yang dulu ngetop tahun 1970-1980-an), dan PCS (personal communication standard). Perkembangan telepon seluler yang kian menjadi-jadi dengan berbagai fasilitas ciamik yang andal (semacam MMS, mobile Internet, dan lain- lain), menyebabkan semakin getolnya pencarian-pencarian sistem multiple access baru yang lebih tanggap dan cepat dalam melayani banyak pelanggan.

Hingga saat ini dua teknik pendahulu yang masih digunakan adalah FDMA (frequency division multiple access) dan TDMA (time division multiple access). Pengguna teknik FDMA cukup banyak juga. Salah satunya adalah telepon seluler berbasis AMPS, yang di Indonesia dipakai pada awal munculnya telepon seluler. AMPS (advanced mobile phone system) adalah sistem seluler Amerika Serikat pertama (dan analog) yang dikembangkan oleh AT&T Bell Laboratories pada akhir tahun 1970-an.

Pemakai teknik TDMA pun juga cukup banyak. Salah satunya adalah telepon seluler berbasis GSM, yang sekarang lagi marak di Indonesia. GSM yang mulanya adalah singkatan dari groupe spe'cial mobile diganti menjadi global system for mobile communication untuk keperluan pemasaran yang lebih luas. Ia merupakan standar seluler digital generasi kedua yang dikembangkan oleh Eropa untuk menyatukan sistem selulernya. Bermula dengan dikenalkan pada pasar Eropa tahun 1991, kini GSM telah menjadi standar terpopuler di dunia untuk radio seluler baru dan peralatan komunikasi pribadi. Karena kepopuleran itulah, teknik TDMA ikut terdongkrak dan seolah "kagak ade matinye".

Akan tetapi waktu terus berjalan, dan pesaing-pesaing baru selalu akan muncul untuk mengganti pemain lama. Salah satunya adalah teknik CDMA (code division multiple access). Dengan lebih banyak kelebihan (dan sedikit kekurangan), teknik yang diusung oleh US Narrowband SpreadSpectrum (IS-95) ini, mulai berkembang dan terus berkembang. GSM yang tidak tinggal diam, tentu akan berusaha mempertahankan takhtanya. Kita saksikan saja persaingan yang kian marak ini dan barangkali untuk beberapa dekade, kita sementara menjadi penonton saja.

FDMA

FDMA adalah sistem multiple access yang menempatkan seorang pelanggan pada sebuah kanal berbentuk pita frekuensi (frequency band) komunikasi. Jika satu pita frekuensi dianggap sebagai satu jalan, maka FDMA merupakan teknik "satu pelanggan, satu jalan". Pada saat pelanggan A sedang menggunakan jalan itu, maka pelanggan lain tidak dapat menggunakan sebelum pelanggan A selesai.

Jadi, kalau dalam waktu yang bersamaan ada 100 pelanggan yang ingin berkomunikasi dengan rekannya, maka sudah tentu diperlukan 100 pita frekuensi. Kalau setiap pita memerlukan lebar 30 Kilo Hertz (kHz) dan frekuensi yang digunakan berawal dari 890 Mega Hertz (MHz), maka:

• Pita frekuensi kanal 1 mulai dari 890 MHz hingga 890,030 Mhz

• Pita frekuensi kanal 2 mulai dari 890,030 MHz hingga 890,060 MHz

• Pita frekuensi kanal 3 mulai dari 890,060 MHz hingga 890,090 MHz

• dan seterusnya.

Sedangkan lebar total seluruh pita yang digunakan adalah:

100 x 30.000 Hz = 3.000.000 Hz = 3 MHz.

Artinya, jika frekuensi yang digunakan mempunyai batas bawah 890 MHz, maka batas atasnya adalah 893 MHz.

Akan tetapi, frekuensi yang tersedia untuk komunikasi bergerak dibatasi oleh peraturan yang ada karena frekuensi-frekuensi lain pasti digunakan untuk jatah keperluan yang lain pula. Sementara jatah frekuensi yang ada pun harus dibagi antarpenyelenggara telepon seluler. Karena itu, untuk memperbanyak kapasitas dengan jumlah kanal yang terbatas, digunakan trik-trik tertentu sesuai dengan strategi si penyelenggara.

TDMA

Berbeda dengan FDMA yang memberikan satu pita frekuensi untuk dipakai satu pelanggan, TDMA memberikan satu pita frekuensi untuk dipakai beberapa pelanggan. Jadi kanal-kanal komunikasi dirupakan dalam bentuk slot-slot waktu. Slot waktu adalah berapa lama seorang pelanggan mendapat giliran untuk memakai pita frekuensi. Satu slot waktu digunakan oleh satu pelanggan. Slot-slot waktu ini dibingkai dalam satu periode yang disebut satu frame. Jadi misalkan ada 10 pelanggan yang masing-masing adalah A, B, C, D, E, F, G, H, I, dan J, maka dalam satu frame terdapat 10 slot waktu yang merupakan giliran tiap pelanggan untuk menggunakan pita frekuensi yang sama.

Proses komunikasi multi-access dilakukan dengan menjalankan frame ini berulang- ulang sehingga akan muncul urutan giliran pemakaian saluran seperti: A-B-C-D-E-F-G-H-I-J-A-B-C-D- E-F-G-H-I-J-A-B-C-dan seterusnya. Tentu saja harus ada pembatasan jumlah pelanggan yang menggunakan satu pita frekuensi ini. Jika tidak dibatasi, periode frame akan terlalu panjang dan akibatnya timbul komunikasi terputus-putus yang mengganggu pembicaraan.

Karena sifatnya yang tidak kontinyu (tidak terjadi pemakaian pita frekuensi terus menerus oleh satu pelanggan dalam satu periode pembicaraan), maka teknik TDMA hanya dapat mengakomodasi data digital atau modulasi digital. Sehingga sinyal-sinyal analog yang akan dikirim, harus diubah menjadi format digital dahulu.

CDMA

Teknik CDMA adalah temuan yang lebih baru dibandingkan dengan FDMA dan TDMA. Teknik CDMA berawal pada tahun 1949 ketika Claude Shannon dan Robert Pierce (yang banyak jasanya untuk kemajuan teknologi telekomunikasi saat ini) menyampaikan ide dasar CDMA. Teknik ini merupakan temuan yang brilian karena kanal yang satu dengan lainnya tidak dibedakan dari frekuensi/FDMA atau waktu/TDMA yang secara awam lebih mudah dipahami, melainkan dengan perbedaan kode. Jadi pada CDMA, seluruh pelanggan menggunakan frekuensi yang sama pada waktu yang sama.

Dalam diagram blok CDMA tampak bahwa data input dari satu pelanggan dikalikan dengan salah satu dari banyak kode PN (pseudo noise). Jumlah kemungkinan kode yang dihasilkan oleh generator kode PN identik dengan jumlah kanal yang disediakan. Jika generator kode PN mampu menghasilkan 100 kode, maka sebanyak itu pula kanal yang diperoleh. Oleh modulator hasil perkalian antara input data dengan kode PN ditumpangkan pada sinyal RF (radio frequency) agar dapat dikirim lewat udara.

Di penerima, demodulator memisahkan sinyal pesan dari sinyal RF yang ditumpanginya. Sinyal pesan yang mengandung kode ini dicocokkan dengan kode PN di penerima. Sinyal pesan akan dipisahkan dari kode dan diteruskan jika kode PN pada sinyal masuk sama dengan kode PN pada penerima.

CDMA (juga disebut DSSS/ direct sequence spread spectrum) merupakan salah satu dari dua jenis teknik murni spread spectrum multiple access (SSMA). Jenis lainnya dikenal sebagai FHMA (frequency hopping spread spectrum). Kedua jenis ini tergolong SSMA karena sinyalnya tersebar (spread) pada spektrum pita frekuensi yang lebar. Pada CDMA, penyebaran sinyal diperoleh akibat proses perkalian data input (yang mempunyai waktu perubahan lambat) dengan kode PN (yang mempunyai waktu perubahan cepat).

Walaupun pita frekuensinya lebar, tegangan sinyal yang dihasilkan sangat kecil, menyerupai noise (bising) yang selalu menyertai gelombang radio. Sehingga apabila dimonitor oleh penerima lain, sinyal yang dipancarkan oleh pengirim berbasis CDMA hanya berupa noise (seolah-olah menunjukkan ketiadaan sinyal pancar) yang tidak mengganggu sinyal lain. Sifat CDMA yang lain adalah kemampuannya untuk tahan terhadap jamming (penutupan oleh sinyal yang lebih kuat) pada pita frekuensi sempit. Hal ini terjadi karena jamming pada pita frekuensi sempit itu tidak akan mengganggu sinyal-sinyal CDMA yang tersebar di pita frekuensi lain.

Biar begitu jika diterapkan pada telepon seluler, CDMA mempunyai masalah yang disebut near-far problem. Masalah ini terjadi akibat pemakaian pita frekuensi yang sama pada waktu yang sama. Akibatnya, pelanggan yang paling dekat dengan base station (BTS) akan mendominasi BTS karena sinyalnya diterima (oleh BTS) paling besar dibandingkan dengan pelanggan lain yang jaraknya lebih jauh. Bagi pelayanan yang baik, hal itu tidak diharapkan. Untuk mengatasinya dipakailah teknik power control. Teknik ini menyebabkan BTS memerintahkan ponsel pelanggan untuk mengurangi daya pancar (secara otomatis) ketika sinyalnya diterima paling besar. Sehingga seluruh pelanggan di areal cakupan BTS akan diterima dengan besar sinyal yang sama.

CDMA dapat dikombinasikan dengan teknik lain untuk menjadi teknik hibrid semacam: FCDMA yang merupakan kombinasi dari FDMA dan CDMA, TCDMA yang merupakan kombinasi dari TDMA dan CDMA. Juga ada DS-FHMA yang merupakan kombinasi dari CDMA/DSSS dengan FHMA.

Jadi, dunia komunikasi bergerak akan terus melejit dan melahirkan teknologi terbaru. Tidak hanya fitur-fitur ponsel, tetapi juga dukungansaluran telekomunikasi. Dewasa ini sistem komunikasi sudah menawarkan suatu kecepatan dan kapasitas, yaitu kecepatan yang tinggi dan kapasitas data yang besar. Infrastruktur telekomunikasi yang dibangun harus menjanjikan kompatibilitas yang tinggi dengan suatu sistem komunikasi yang lain. Disinilah sistem komunikasi digital menjadi idola baru bagi industri telekomunikasi saat ini. Sistem digital disamping mempunyai kompatibilitas yang tinggi dalam integrasi dengan sistem lain, juga adanya kemudahan dalam implementasi secara perangkat keras. Oleh karenanya sistem komunikasi digital semakin dikembangkan untuk memperoleh kecepatan yang tinggi dan kapasitas data yang semakin besar. Sistem komunikasi digital juga memilliki kualitas data yang lebih baik, karena dapat dilakukan pengecekan kesalahan dalam transmisi datanya.

Lahirnya sistem komunikasi spread spectrum pada pertengahan tahun 1950 dilatarbelakangi oleh kebutuhan akan sistem komunikasi yang dapat mengatasi masalah interferensi, dapat menjamin kerahasiaan informasi yang dikirim dan dapat beroperasi pada tingkat S/N (signal to noise ratio) yang rendah atau tahan terhadap derau yang besar. Dalam sistem komunkasi sekarang ini, dimana penggunaan frekuensi sudah cukup padat sehingga interferensi dan noise dari transceiver lain cukup besar. Dalam komunikasi radio kita juga sering mendengar adanya penyadapan pembicaraan pada handphone oleh pesawat radio lain. Namun dengan sistem spread spektrum ketakutan yang dialami pada sistem komunikasi diatas akan dapat di atasi karena data yang ditransmit pada sistem spread spektrum adalah data acak yang dikenal sebagai noise. Jadi jika penerima tidak mengetahui code yang digunakan untuk melebarkan data maka penerima hanya akan menerima sinyal noise saja. Istilah spread spectrum digunakan karena pada sistem ini sinyal yang ditransmisikan memiliki bandwidth yang jauh lebih lebar dari bandwidth sinyal informasi (mencapai ribuan kali). Proses penebaran bandwidth sinyal informasi ini disebut spreading.

Kelebihan lain yang dimiliki sistem spread spektrum adalah sistem ini dapat digunakan untuk multiple acces secara CDMA (Code Division Multiple Acces). Sistem CDMA yaitu suatu sistem multiple akses yang dapat dilakukan pada frekuensi dan waktu yang sama, caranya dengan menggunakan kode yang berbeda. Jika dibanding sistem multiple akses yang lain seperti FDMA (Frekuency Division Multiple Acces) dan TDMA (Time Division Multiple Acces), maka CDMA merupakan sistem yang sedang di minati oleh perusahaan komunikasi, karena dapat digunakan pada frekuensi yang sama secara bersamaan.

Di Indonesia belum banyak yang mengunakan sistem CDMA untuk infrastruktur telekomunikasinya. Perusahaan telepon seluler sebagian besar menggunakan sistem TDMA yaitu untuk telepon seluler GSM. Sedangkan perusahaan telepon seluler yang sudah menggunakan sistem CDMA adalah Komselindo. Sistem yang sekarang sudah digunakan adalah narrow-band CDMA dan rencananya Komselindo akan membuat infrastruktur untuk wide-band CDMA.

Spread sprectrum sendiri belum banyak digunakan , dalam bidang jaringan komputer kita sudah mengenal Wave LAN. Wave LAN ini menggunakan spread spectrum untuk mentransmisikan datanya. Sistem ini dibuat dalam bentuk card. Wave LAN sendiri mempunyai kecepatan yang cukup tinggi untuk teknologi radio pada frekuensi rendah, yaitu 1,5 Mbps. Dengan kecepatan sebesar itu Wave LAN sudah setara dengan komunikasi T1 pada VSAT yang sering digunakan untuk komunikasi-komunikasi di indonesia. Kecepatan ini juga jauh lebih cepat jika dibandingkan dengan modem radio yang paling cepat yang pernah yang umum digunakan untuk komunikasi radio paket, yaitu hanya 64 Kbps, inipun harus menggunakan transceiver yang mempunyai bandwith yang lebar. Namun alat ini masih cukup mahal untuk pasaran di indonesia, satu card harnganya sekitar $ 5.000 USA.

Dalam teknik spread spektrum sendiri di kenal beberapa cara modulasi yang digunakan untuk melebarkan dan mangacak datanya. Teknik spreading yang terkenal dan banyak dipilih para produsen dalam desain produk adalah Direct Sequence Spread Spektrum (DSSS). Sistem ini dipilih karena adanya kemudahan dalam mengacak data yang akan dispreading. Dalam DSSS spreading hanya menggunakan sebuah generator noise yang periodik yang di sebut Pseudo Noise Generator.

Sebuah sistem spread-spectrum harus memenuhi kriteria sebagai berikut :

  1. Sinyal yang dikirimkan menduduki bandwidth yang jauh lebih lebar daripada bandwidth minimum yang diperlukan untuk mengirimkan sinyal informasi
  2. Pada pengirim terjadi proses spreading yang menebarkan sinyal informasi dengan bantuan sinyal kode yang bersifat independen terhadap informasi
  3. Pada penerima terjadi proses despreading yang melibatkan korelasi antara sinyal yang diterima dan replika sinyal kode yang dibangkitkan sendiri oleh suatu generator lokal.

Kode yang digunakan pada sistem spread spectrum memiliki sifat acak tetapi periodik sehingga disebut sinyal acak semu (pseudo random). Kode tersebut bersifat sebagai noise tapi deterministik sehingga disebut juga noise semu (pseudo noise). Pembangkit sinyal kode ini disebut Pseudo Rando Generator (PRG) atau pseudo noise generator (PNG). PRG inilah yang akan melebarkan dan sekaligus mengacak sinyal data yang akan dikirimkan. Dalam komunikasi spread spectrum semakin lebar bandwidth akan semakin tahan terhadap jamming dan akan semakin terjamin tingkat kerahasiaannya. Disamping itu akan semakin banyak kanal yang bisa dipakai. Seperti yang di terangkan oleh Shanon , salah seorang ahli statistik telekomunikasi, dalam ilmu komunikasi dinyatakan bahwa kapasitas kanal akan sebanding dengan bandwidth transmisi dan logaritmik dari S/N-nya. Jadi agar sistem komunikasi dapat bekerja dengan kapasitas kanal yang tetap pada level daya noise yang tinggi (S/N yang rendah), dapat dilakukan dengan jalan memperbesar bandwidth transmisi W. Disamping itu Shannon juga mengemukakan bahwa sebuah kanal dapat mentransmisikan informasi dengan probabilitas salah yang kecil apabila terhadap infromasi tersebut dilakukan pengkodean yang tepat dan rate infromasi yang tidak melebihi kapasitas kanal meskipun kanal tersebut memuat derau acak.

Sistem komunikasi spread spectrum sebagai salah satu sistem komunikasi digital, memiliki beberapa kelebihan dibandingkan sistem komunikasi analog yaitu:

  • Lebih kebal terhadap jamming
  • Mampu menekan interferensi
  • Dapat dioperasikan pada level daya yang rendah
  • Kemampuan multiple access secara CDMA (Code Division Multiple Access)
  • Kerahasiaan lebih terjamin
  • Ranging

Dalam teknik spread spectrum sendiri ada beberapa macam cara yang digunakan, yaitu Direct Sequence Spread Spectrum (DSSS), Frequency Hopping Spread Spectrum (FSSS), Time Hopping Spread Spectrum (TSSS) dan Chirp atau Hybrid Spread Spectrum. Pada tiap-tiap metode mempunyai keunggulan sendiri-sendiri, namun secara umum DSSS mempunyai unjuk kerja terbaik untuk gangguan noise dan anti jamming, serta paling susah untuk dideteksi. Namun ada kekurangan pada DSSS ini, yang sering menjadi kendala dalam implementasinya, yaitu pada proses sinkronisasi sinyal yang diterima dengan sinyal dari generator noise lokal pada penerima.



Diposting oleh Pathloss50 Label:

Multiplexing the basis of a data allow many relationships network.Multiplexing (connections) over the network share the same transmission facilities. Two main types of multiplexing are discussed here; Time-division multiplexing (TDM) and Statistical multiplexing (statmux).

TDM TDM

Time-division multiplexing is allocated a certain amount of time in a physical circuit to a number of connections.. Because of the physical circuits typically have data flow velocity is constant, then the allocation of the amount of time in the circuit is equal to the bandwidth allocation.

TDM is the synchronization technology. Data is transmitted into the network to the primary time source (master clock), so that there would be no traffic jams when the data is transmitted.

One of the main problems of TDM is the bandwidth allocated to a number of connections is only allocated to those connections, whether they're used or notSo we are still paying for unused capacity, this result is quite expensive TDM.

Statistical Multiplexing Statistical Multiplexing

Statistical multiplexing become popular due to cost issues in TDM. Statistical multiplexing transmission bandwidth is shared between all users of a network, without a dedicated one reserved for the connection.

One of the benefits of TDM statmux is cheaper. With statmux network, we can sell more capacity than the network we have. In theory, not all users want the data transmission network with a maximum speed at the same time.

There are several technologies statmux, there are three main things of interest in this technology in the past 10 years are; IP, Frame Relay, and ATM. The MPLS can be said is the fourth type of statmux technology.

Statmux technology works by dividing the network traffic into discrete units and handle all the units separately. In IP, the unit is called a packet; on Frame Relay is called frame; the ATM cell is called. The above items have the same concept in each case. Stamux networks allows carriers handle more than that owned by the network used (oversubscription), are much cheaper than the TDM circuit.

Issues - issues that are in Statmux

Statmux introduce some things that are not found in TDM networks. When the packet enters the network is not simultaneous (asynchronous), it resulted in conflicting sources. If two packages right into the router at the same time (coming from two different interfaces) and addressed to the same output interface, it is a source of conflict. One of the packages have to wait another packet to be transmitted, while packets are not transmitted to wait until the first packet sent on the link in question. Although the time delay occurs, but usually not large.

There are also some things to do with the package contained in the buffers. Some types of traffic (bulk data transfer) are described by way of stored (buffered) while the other traffic (voice, pictures) do not. Necessary so that different treatment mechanisms to meet the demand for different applications used in network.

Statmux technology has 3 abilities that are not owned by TDM technology, namely; buffering (storage), Queuing (queue), and Dropping (Decrease).

Frame Relay has a simple method that can answer these issues. The concept is a committed information rate (CIR) , forward and backward explicit congestion notification ( FECN and BECN ) and discard

IP has a Diff Serv Code Point (DSCP) bits, which evolved from the primary IP bits. IP also have the random early discard (RED), which has the advantage that the TCP both in terms of handling the drop and TCP is the transport-layer protocols of the most widely used for IP.. Finally, IP has a bit of explicit congestion notification (ECN), which is still fairly new and only used a limited basis.

ATM explain the source of the conflict by dividing the data in a small size called cells. ATMs also have the 5 different classes of service, namely:

  • CBR (constant bit rate) CBR (constant bit rate)
  • rt-VBR (real-time variable bit rate) rt-VBR (real-time variable bit rate)
  • nrt-VBR (non-real-time variable bit rate) nrt-VBR (non-real-time variable bit rate)
  • ABR (available bit rate) Abr (available bit rate)
  • UBR (unspecified bit rate) UBR (unspecified bit rate)

IP is a protocol statmux first. RFC 791 defines IP in 1981 and became important in recent years. Frame Relay is not available commercially until the early 1990s, while the ATM appeared in mid-1990.To view or download this please RFC 791 to: http://www.ietf.org/rfc/rfc0791.txt?number=791.

One of the problems faced by network administrators when replacing TDM circuits to Frame Relay and ATM circuits is that running IP over FR or ATM is a protocol running over statmux other statmux protocol. This is usually less than optimal because the existing mechanism in the layer statmux to resolve conflicting resource issues are often not translated perfectly to the other.

That's what the considerations for choosing one of two things. One of them is to avoid congestion at the network layer of the two statmux, or we find a way to map the three layers of conflict regulation mechanism to the second layer of conflict regulation mechanism. Because those two things is something that is not possible and it is not financially attractive to avoid congestion at the network layer statmux two, we need to be able to map the three layers of conflict regulation mechanism to layer two. This is one reason MPLS plays a key role in the development of current networks.

What is Traffic Engineering?

Network engineering be manipulated to suit the network We made the best predictions of how the traffic can go (flow) through the network so that we can choose the appropriate circuits and network equipment (routers, switches, etc.) as appropriate. Engineering Network is usually done in the long run because the time required to install the circuit or new equipment can be very long. Traffic engineering to manipulate traffic in accordance with the network. No matter how persistent traffic in the network tried would not fit 100% with a prediction that has been made. Traffic Engineering is essentially moving traffic so that traffic from the links that have the congestion moved to a link that is not in use. Traffic Engineering can be implemented in a way that is as easy as tweaking IP metrics in the interface or something as complex as running a full-ATM PVC mesh and PVC path optimizing based on past traffic demand.

Traffic engineering with MPLS is an attempt to obtain the best connection-oriented traffic engineering techniques (such as the placement of ATM PVC) and combined with IP routing (IP routing). The theory is to do t raffic engineering with MPLS is more effective as the ATM, but without the many shortcomings of IP over ATM.

MPLS traffic engineering before

IP traffic engineering in general control the point where the IP through our network to alter the usual relationship. There is no possible way to control the path of traffic based on where traffic is coming, but we can only control where the traffic destination. Although both IP traffic engineering and many large networks to use it successfully, we will see that a lot of IP traffic engineering problem that can not be resolved.

ATMs can be used to pass the PVC in the network traffic from a source to the destination. This means we have more things that controlled the flow of traffic in the network. Some of the largest ISPs in the world using an ATM to control traffic on the network. They do this by making an ATM PVC between a set of routers and periodically re-measure and placing it on the ATM PVC traffic study of the router. But the problem that arises is that the router is a full-mesh causes O (N2) will flood when a relationship (link) die and O (N3) when the router dies flooding.This causes much concern in several large networks.





Diposting oleh Pathloss50 Label:
Visit the Site